Assessment of Phenol Removal Efficiency by Synthesized Zero Iron Nanoparticles and Fe Powder Using the Response Surface Methodology
Authors
Abstract:
The purpose of this study was the investigation of the removal of phenol with nanoparticles zero valent iron and iron powder. The effect of various parameters such as initial concentration, pH, contact time, and dosage of NZVI and Fe powder was examined, and a Central Composite Design (CCD) was then applied to appraisal the effect of these variables. The chemical and physical characteristics of NZVI were studied with Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) analysis. The results displayed that the adequate initial concentration for phenol sorption, pH, contact time, and sorbent dosage were 5 mg/L, pH 2, 54.75 min and 1.40 g in the case of NZVI and 5 mg/L, pH 2, 55.84 min and 2.5 g in the case of Fe powder. The Central Composite Design (CCD) showed that the fundamental parameters were pH and initial phenol concentration had the main effect on phenol removal.
similar resources
assessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
preparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis
کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.
modeling nitrate removal by nano-scaled zero-valent iron using response surface methodology
background contamination of water resources with nitrate is a serious environmental problem in many regions of the world. in addition, this problem has been observed in some regions of iran. as nitrate is threatening for human health and environment, it must be decreased to standard levels in drinking water. objectives the purpose of this research was to model the nitrate removal from water by ...
full textInvestigation of the efficiency of powder activated carbon magnetized with Fe3O4 nanoparticles in the removal of catechol from aqueous solutions by response surface methodology
Background and Objective: The activities of various industries produce a wide range of pollutants and toxic compounds. One of these compounds is the catechol, a cyclic organic compound with high toxicity and resistant to degradation. Therefore, the purpose of this study was to investigate efficiency of powder activated carbon magnetized with Fe3O4 nanoparticles in the removal of catechol from a...
full textRemoval of Lead from Aquatic Solution Using Synthesized Iron Nanoparticles
Due to its ability in chemical oxidation of contaminants, iron nanoparticle is a material of choice to remove lead ions from aquatic solutions. In this study a reduction method in solution phase was applied to synthesize thenanoparticles. Afterwards, the size of the synthesized particles were confirmed by Scanning Electron Microscopy. It is worth noting that th...
full textPhotocatalytic Removal of Amaranth Optimization Using Response Surface Methodology
Since Amaranth (AM) is one of the dye compounds which is harmful to human’s life its removal from industrial waste water would reduce their environmental impact and health effect. Copper nanoparticle (CuNP) is a simple and eco-friendly material which can be used to remove this pollutant. In this paper, copper nanoparticles were synthesized, for removal of AM dye. The experiments were designed b...
full textMy Resources
Journal title
volume 36 issue 3
pages 137- 146
publication date 2017-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023